一级大片免费_成人免费观看在线_国产一区二区三区精品久久久无广告_久久99精品久久久久久青青91_com.黄_久久久久久久国产免费看

position: EnglishChannel  > Experts in China> The Architect of Quantum Mathematics

The Architect of Quantum Mathematics

Source: Science and Technology Daily | 2025-06-20 19:12:30 | Author: By LONG Yun & BI Weizi

There is a certain old-fashioned elegance in the way Professor Nicolai Reshetikhin teaches. In an age dominated by digital presentations and slide decks, this world-renowned mathematical physicist chooses to write everything on the blackboard, line by line, with meticulous precision.

In 2021, shortly after joining Tsinghua University's Yau Mathematical Sciences Center (YMSC), his handwritten lecture notes went viral on Chinese social media platforms for their clarity, rigor and aesthetic beauty.

Reshetikhin is one of the founding figures of quantum group theory, a pioneer behind the Reshetikhin–Turaev (RT) invariants, a major contributor to quantum integrable systems, and a key figure in advancing our understanding of Poisson geometry and Quantum Kac-Moody algebra. His work bridges abstract mathematical structures with deep physical insights, making him one of the most influential thinkers in modern mathematical physics.

From nuclear engineering to mathematics

When asked how he chose mathematics as his life's work, Reshetikhin explained, "I didn't start as a mathematician. I was in the engineering school, studying nuclear engineering for three years."

This early exposure to applied sciences later shaped his approach to theoretical problems. After shifting to theoretical physics at university, he found his calling in mathematics during an internship at a prestigious mathematical institute. That transition from practical nuclear engineering to the abstract world of quantum symmetries set the stage for a career marked by groundbreaking discoveries.

Quantum groups: hidden symmetries of the universe

One of the most abstract yet fundamental aspects of Reshetikhin's work lies in quantum groups. When asked to explain them simply, he offered an intuitive analogy: "Quantum groups generalize the notion of symmetry. Just as classical symmetry groups describe rotations in space or reflections in crystals, quantum groups describe more complex, hidden symmetries."

These symmetries are not visible in the traditional geometric sense but emerge in quantum mechanical systems. They form the backbone of modern developments in mathematics and theoretical physics. For example, quantum groups underlie the structure of knot invariants, allowing mathematicians to distinguish different knots using algebraic tools. This led directly to the Reshetikhin–Turaev invariants, now a cornerstone of low-dimensional topology.

But their importance extends beyond pure mathematics. Quantum groups appear in conformal field theory, topological quantum computing, and statistical mechanics. Their rich algebraic structure continues to inspire new research across disciplines.

Quantum integrability and the mystery of entanglement

Another major theme in Reshetikhin's work is quantum integrable systems. These rare systems, with a high degree of internal symmetry, often allow exact solutions, illuminating deeper physical principles.

He elaborated: "In many quantum integrable systems, quantum groups describe the hidden symmetries." When asked about the relationship between integrability and quantum entanglement, a topic of growing interest due to quantum computing, Reshetikhin noted that while entanglement is not directly tied to integrability, these systems provide ideal laboratories for studying it.

He highlighted the work of physicists like John Cardy and Vladimir Korepin among many others, who explored entanglement in integrable settings. He also noted China's growing role in this research, where scientists are advancing quantum information and integrability.

The future of mathematical physics

Looking ahead, Reshetikhin identified key open questions in mathematical physics. One is the rigorous formulation of quantum Yang-Mills theory, a Millennium Prize Problem.

"For example, one of the famous Millennium Problems aims to establish a rigorous mathematical foundation for the quantum field theory underlying the Standard Model—specifically, Yang-Mills theory—and more generally, non-Abelian gauge theories."

He called the problem both formidable and fascinating. "Physicists use approximations, but a mathematically consistent theory is still absent."

Most ambitiously, he acknowledged the struggle to reconcile gravity with quantum field theory.

"There are many interesting questions about gravity, like how to fit it with quantum field theory, whether it should remain classical, or whether quantum gravity exists. This debate is not over." He added, "Mathematically speaking, there is close to zero progress in understanding quantum gravity."

Other challenges that he personally wants to address include limit shapes in dimer models on non-bipartite graphs and the link between Poisson sigma models and integrable systems—a conjecture he co-authored, suggesting that wave functions of semiclassical integrable systems can be expressed via Feynman diagrams related to universal two-dimensional Poisson sigma models.

Serving as a bridge

Despite his focus on abstract theories, Reshetikhin sees science as a human endeavor transcending borders. His footsteps have touched many countries to promote global scientific development. "International cooperation is very important. The more exchanges, collaborations, and visits, the better."

Reshetikhin embraces his dual role as a scientist and mentor. "I'm driven by my internal interest in research. I'm very lucky to be actively involved in my career." When asked what he hopes students take from his classes, he replied: "To gain the knowledge and I also teach them to think originally. To be a scientist, you must take the next step from studying to creating something new."

To young researchers who choose between theory and application, he advised: "Follow your curiosity. Fundamental research may seem distant from real-world impact, but history shows the most important breakthroughs come from exploring the unknown."

At the end of the interview, Reshetikhin handed us his handwritten notes to ensure the article's precision and clarity. This small act reflected his traits as a respectable scientist with rigorous dedication and a commitment to advancing public understanding. Reshetikhin bridges disciplines and cultures, proving that science thrives on both brilliance and the willingness to illuminate the path for others.

NIU Yun from YMSC also contributed to this article.

Editor:龍云

Top News

Jointly Protecting People's Rights in Digital Era

?Emerging technologies like AI, big data and the Internet of Things are rapidly reshaping the world in this era of digital intelligence. However, they are also bringing challenges to human rights, which makes joint efforts essential. Science and Technology Daily spoke with international experts on these issues against the backdrop of the 2025 China-Europe Seminar on Human Rights hosted by the China Society for Human Rights Studies and Cátedra China Foundation in Madrid, Spain, on June 25 on the theme "Human Rights in the Era of Digital Intelligence."

First Human Clinical Trial of Invasive BCI in China

A major breakthrough in neurotechnology has been achieved with the successful completion of China's first-in-human clinical trial of an invasive brain-computer interface (BCI) system. With that China becomes the second country in the world to reach the clinical stage in this field.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
主站蜘蛛池模板: 国产h在线观看 | 一级毛片免费高清 | 国产 精品 家庭影院 | www.69国产 | 国产人成| 久久久久 免费视频 | 伊人插插插 | 国产精品45p | 神马久久春色视频 | av高清在线看 | 国产一区二区三区天码 | 91超碰caoporn97人人 | 国产区第一页 | 伊人色综 | 国产精品高清一区二区不卡 | 樱花yy私人影院亚洲 | 亚洲剧场午夜在线观看 | 欧美日韩在线播放一区二区 | 日本黄色网站免费看 | 斗破苍穹在线观看免费完整观看 | 欧美一区二区在线看 | 少妇特黄a一区二区三区 | 深夜福利视频在线 | 天天操狠狠干 | 法国性迷宫 | 456亚洲精品成人影院 | 亚洲欧美日韩在线观看a三区 | 欧美日韩国产经典色站一区二区三区 | 久9热这里只有精品视频 | 成人一区二区在线观看视频 | 国产一区亚洲二区 | 亚洲国产午夜 | 国产精品日韩在线播放 | caoporn超碰最新地址进入 | 久久是精品 | 色www视频永久免费男的天堂 | 亚洲国产视频一区二区三区 | 国产成人麻豆精品午夜在线 | 亚洲一区二区三区在线视频 | 性生交大片xx | 欧美日本日韩aⅴ在线视频 久久se视频 |