一级大片免费_成人免费观看在线_国产一区二区三区精品久久久无广告_久久99精品久久久久久青青91_com.黄_久久久久久久国产免费看

position: EnglishChannel  > News> Precipitation Measuring Radar Operational in Space

Precipitation Measuring Radar Operational in Space

Source: Science and Technology Daily | 2023-09-06 15:23:46 | Author: FU Yifei&LIANG Yilian

Diagram of Fengyun 3G in orbit. (PHOTO: 704 Institute of CASC's 9th Institute)

By?FU?Yifei?&?LIANG?Yilian

On April 16, China launched the Fengyun-3G into space. Its main payload is China's first satellite-borne Ku and Ka Dual-frequency Precipitation Measurement Radar (PMR).

As part of China's meteorological and climate satellite system, this second-generation polar-orbiting environment satellite will provide crucial information on severe weather conditions like heavy rain that can lead to calamities like floods and landslides.

By August 29, the PMR had detected precipitation in the middle and low latitudes and captured the three-dimensional structure of the rainfall systems of Typhoon Mawar, and Typhoon Talim.

Pursuing new techniques for rainfall forecasting

China is located in the typhoon-active zone west of the North Pacific Ocean. Rainstorms and waterlogging have been the main natural disasters in some areas of the country.

In the past, due to technical limitations, it was difficult to obtain information on large-scale surface precipitation. In 1997, the U.S. and Japan jointly launched the Tropical Rainfall Measurement Mission (TRMM) satellite loaded with a precipitation radar, creating a precedent for deploying satellite-borne radars to detect precipitation.

In the early 21st century, China carried out preliminary research on such radars and realized that dual-frequency radars work better than the single-frequency radar used by the TRMM satellite.

"PMR can combine the advantages of high radar observation resolution and wide satellite observation range," Jiang Baisen, CASC microwave remote sensing technology research director, introduced that the Ku-band is conducive to the detection of strong precipitation, Ka-band is conducive to the detection of weak precipitation, and the synchronous work of the two can expand the detection ability of precipitation, even if it is 0.2 mm drizzle per hour, it can also accurately perceive.

Also, dual-frequency monitoring can distinguish rain, snow, hail, and other states, and detect liquid and solid changes in the precipitation process, which is very important in meteorological applications.

Overcoming challenges

However, the development of China's first satellite-borne precipitation measuring radar had to overcome many challenges. It was difficult to design, process and manufacture, the Chief Designer Yang Runfeng said.

In July 2010, Yang and his colleagues took the prototype to Sichuan province in southwest China to test it. It was summer and the weather was hot and humid while mosquitoes raged in the fields. The team bore the discomfort stoically and in September of that year, the test was initially completed.

After more than two months of flying tests, the research team finally obtained the required data, laying the foundation for subsequent engineering work.

Compared with ground-based radars, spaceborne radars face additional problems, such as surface echoes that interfere with detection.

The team carried out a lot of innovative research using electromagnetic wave radiation to suppress interference.

While the radar is functioning stably, the work of the developers is not over by a long chalk. They are now seeking to develop other precipitation-measuring radars in space, especially the next generation of such radars.

Meteorological work is closely related to life safety, production and development, and the ecological environment, and it is a major thing that concerns the happiness and well-being of the people, said Yu Yong, director of 704 Institute of the China Aerospace Science and Technology Corporation.

Editor:梁依蓮

Top News

Jointly Protecting People's Rights in Digital Era

?Emerging technologies like AI, big data and the Internet of Things are rapidly reshaping the world in this era of digital intelligence. However, they are also bringing challenges to human rights, which makes joint efforts essential. Science and Technology Daily spoke with international experts on these issues against the backdrop of the 2025 China-Europe Seminar on Human Rights hosted by the China Society for Human Rights Studies and Cátedra China Foundation in Madrid, Spain, on June 25 on the theme "Human Rights in the Era of Digital Intelligence."

First Human Clinical Trial of Invasive BCI in China

A major breakthrough in neurotechnology has been achieved with the successful completion of China's first-in-human clinical trial of an invasive brain-computer interface (BCI) system. With that China becomes the second country in the world to reach the clinical stage in this field.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
主站蜘蛛池模板: 不卡视频一区 | 91福利视频在线观看 | 又色又爽又黄又免费看的视频 | 99免费看片| 免费在线观看视频 | 91高清视频在线观看 | 亚洲欧洲日本mm | 秋霞在线午夜 | 91大神精品在线观看 | 国产精品美女久久久免费 | 青草精品在线 | 鸡鸡磨逼逼 | www一级片| 亚洲国产欧美一区二区潘金莲 | 污视频在线免费观看一区二区三区 | 国产精品乱码在线观看 | 91 视频网站| 亚洲v.com| 国产一区二区三区亚洲综合 | 久久精品re | 欧美成人一级视频 | 成人区一区二区三区 | 国产娱乐凹凸视觉盛宴在线视频 | 亚洲毛片欧洲毛片国产一品色 | 久久www人成免费看片中文 | av在线伊人 | 免费观看全黄做爰大片 | 欧美一级成人欧美性视频播放 | 99视频有精品 | 三妻四妾免费 | 亚洲精品二区 | 亚洲国产一区二区a毛片 | mimiai最新地址久久 | 日韩免费视频在线观看 | www.av小次郎 | 国产精品免费av一区二区三区 | xxxxwww国产 | 国产精品中文在线 | 日日干夜夜欢 | 精品国产一区二区三区久久久樱花 | 91资源在线视频 |